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Abstract 
Cluster analysis divides data into groups (clusters) for the purposes of summarization or 
improved understanding.  For example, cluster analysis has been used to group related 
documents for browsing, to find genes and proteins that have similar functionality, or as a 
means of data compression.  While clustering has a long history and a large number of 
clustering techniques have been developed in statistics, pattern recognition, data mining, 
and other fields, significant challenges still remain. In this chapter we provide a short 
introduction to cluster analysis, and then focus on the challenge of clustering high 
dimensional data.  We present a brief overview of several recent techniques, including a 
more detailed description of recent work of our own which uses a concept-based 
clustering approach.    

1 Introduction 
Cluster analysis [JD88, KR90] divides data into meaningful or useful groups (clusters).  
If meaningful clusters are the goal, then the resulting clusters should capture the “natural” 
structure of the data.  For example, cluster analysis has been used to group related 
documents for browsing, to find genes and proteins that have similar functionality, and to 
provide a grouping of spatial locations prone to earthquakes.  However, in other cases, 
cluster analysis is only a useful starting point for other purposes, e.g., data compression 
or efficiently finding the nearest neighbors of points.  Whether for understanding or 
utility, cluster analysis has long been used in a wide variety of fields: psychology and 
other social sciences, biology, statistics, pattern recognition, information retrieval, 
machine learning, and data mining.   

In this chapter we provide a short introduction to cluster analysis, and then focus 
on the challenge of clustering high dimensional data.  We present a brief overview of 
several recent techniques, including a more detailed description of recent work of our 
own which uses a concept-based approach.  In all cases, the approaches to clustering high 
dimensional data must deal with the “curse of dimensionality” [Bel61], which, in general 
terms, is the widely observed phenomenon that data analysis techniques (including 
clustering), which work well at lower dimensions, often perform poorly as the 
dimensionality of the analyzed data increases. 

2 Basic Concepts and Techniques of Cluster Analysis 

2.1 What Cluster Analysis Is  
Cluster analysis groups objects (observations, events) based on the information found in 
the data describing the objects or their relationships.  The goal is that the objects in a 

                                                 
* This research work was supported in part by the Army High Performance Computing Research Center cooperative agreement 
number DAAD19-01-2-0014.  The content of this paper does not necessarily reflect the position or the policy of the government, and 
no official endorsement should be inferred. Access to computing facilities was provided by AHPCRC and the Minnesota 
Supercomputing Institute. 

 1



group should be similar (or related) to one another and different from (or unrelated to) the 
objects in other groups.  The greater the similarity (or homogeneity) within a group and 
the greater the difference between groups, the better the clustering.  

The definition of what constitutes a cluster is not well defined, and in many 
applications, clusters are not well separated from one another.  Nonetheless, most cluster 
analysis seeks, as a result, a crisp classification of the data into non-overlapping groups.  
Fuzzy clustering [HKKR99] is an exception to this, and allows an object to partially 
belong to several groups. 

To illustrate the difficulty of deciding what constitutes a cluster, consider Figure 
1, which shows twenty points and three different ways that these points can be divided 
into clusters. If we allow clusters to be nested, then the most reasonable interpretation of 
the structure of these points is that there are two clusters, each of which has three 
subclusters.  However, the apparent division of the two larger clusters into three 
subclusters may simply be an artifact of the human visual system.  Finally, it may not be 
unreasonable to say that the points form four clusters. Thus, we again stress that the 
notion of a cluster is imprecise, and the best definition depends on the type of data and 
the desired results. 

 
 
 
 
.                . 
 
 
 
 
 
 
    
 

d) Four clusters. c) Six clusters.  

b) Two clusters a) Initial points

Figure 1: Different clusterings for a set of points. 

2.2 What Cluster Analysis Is Not 
Cluster analysis is a classification of objects from the data, where by “classification” we 
mean a labeling of objects with class (group) labels.  As such, clustering does not use 
previously assigned class labels, except perhaps for verification of how well the 
clustering worked.  Thus, cluster analysis is sometimes referred to as “unsupervised 
classification” and is distinct from “supervised classification,” or more commonly just 
“classification,” which seeks to find rules for classifying objects given a set of pre-
classified objects.  Classification is an important part of data mining, pattern recognition, 
machine learning, and statistics (discriminant analysis and decision analysis). 

While cluster analysis can be very useful, either directly or as a preliminary 
means of finding classes, there is more to data analysis than cluster analysis.  For 
example, the decision of what features to use when representing objects is a key activity 
of fields such as data mining, statistics, and pattern recognition.  Cluster analysis 
typically takes the features as given and proceeds from there. Thus, cluster analysis, 
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while a useful tool in many areas, is normally only part of a solution to a larger problem 
that typically involves other steps and techniques. 

2.3 The Data Matrix 
Objects (measurements, events) are usually represented as points (vectors) in a multi-
dimensional space, where each dimension represents a distinct attribute (variable, 
measurement) describing the object.  For simplicity, it is usually assumed that values are 
present for all attributes.  (Techniques for dealing with missing values are described in 
[JD88, KR90].)  Thus, a set of objects is represented (at least conceptually) as an m by n 
matrix, where there are m rows, one for each object, and n columns, one for each 
attribute.  This matrix has different names, e.g., pattern matrix or data matrix, depending 
on the particular field.    

The data is sometimes transformed before being used.  One reason for this is that 
different attributes may be measured on different scales, e.g., centimeters and kilograms. 
In cases where the range of values differs widely from attribute to attribute, these 
differing attribute scales can dominate the results of the cluster analysis, and it is 
common to standardize the data so that all attributes are on the same scale.  A simple 
approach to such standardization is, for each attribute, to subtract of the mean of the 
attribute values and divide by the standard deviation of the values.   While this is often 
sufficient, more statistically “robust” approaches are available, as described in [KR90]. 

Another reason for initially transforming the data is to reduce the number of 
dimensions, particularly if the initial number of dimensions is large. We defer this 
discussion until later in this chapter. 

2.4 The Proximity Matrix 
While cluster analysis sometimes uses the original data matrix, many clustering 
algorithms use a similarity matrix, S, or a dissimilarity matrix, D. For convenience, both 
matrices are commonly referred to as a proximity matrix, P.  A proximity matrix, P, is an 
m by m matrix containing all the pairwise dissimilarities or similarities between the 
objects being considered.  If xi and xj are the ith and jth objects, respectively, then the entry 
at the ith row and jth column of the proximity matrix is the similarity, sij, or the 
dissimilarity, dij, between xi and xj.  For simplicity, we will use pij to represent either sij or 
dij. Figures 2a, 2b, and 2c show, respectively, four points and the corresponding data and 
proximity (distance) matrices.  (Different types of proximities are described in Section 
2.7.) 

For completeness, we mention that objects are sometimes represented by more 
complicated data structures than vectors of attributes, e.g., character strings or graphs.  
Determining the similarity (or differences) of two objects in such a situation is more 
complicated, but if a reasonable similarity (dissimilarity) measure exists, then a clustering 
analysis can still be performed. In particular, clustering techniques that use a proximity 
matrix are unaffected by the lack of a data matrix. 

2.5 The Proximity Graph 
A proximity matrix defines a weighted graph, where the nodes are the points being 
clustered, and the weighted edges represent the proximities between points, i.e., the 
entries of the proximity matrix (see Figure 2c).   While this proximity graph can be 
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directed, which corresponds to an asymmetric proximity matrix, most clustering methods 
assume an undirected graph.  Relaxing the symmetry requirement can be useful in some 
instances, but we will assume undirected proximity graphs (symmetric proximity 
matrices) in our discussions.  

From a graph point of view, clustering is equivalent to breaking the graph into 
connected components (disjoint connected subgraphs), one for each cluster.  Likewise, 
many clustering issues can be cast in graph-theoretic terms, e.g., the issues of cluster 
cohesion and the degree of coupling with other clusters can be measured by the number 
and strength of links between and within clusters.  Also, many clustering techniques, e.g., 
single link and complete link (see Sec. 2.10), are most naturally described using graph 
representations. 
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p3 3.162 1.414 0.000 2.000 
p4 5.099 3.162 2.000 0.000 
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Figure 2.  Four points, their proximity graph, and their corresponding data and proximity 
(distance) matrices. 

2.6 Some Working Definitions of a Cluster 
As mentioned above, the term, cluster, does not have a precise definition.  

However, several working definitions of a cluster are commonly used and are given 
below. There are two aspects of clustering that should be mentioned in conjunction with 
these definitions.  First, clustering is sometimes viewed as finding only the most “tightly” 
connected points while discarding “background” or noise points.  Second, it is sometimes 
acceptable to produce a set of clusters where a true cluster is broken into several 
subclusters (which are often combined later, by another technique).  The key requirement 
in this latter situation is that the subclusters are relatively “pure,” i.e., most points in a 
subcluster are from the same “true” cluster. 
 
1) Well-Separated Cluster Definition: A cluster is a set of points such that any point in 

a cluster is closer (or more similar) to every other point in the cluster than to any 
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point not in the cluster. Sometimes a threshold is used to specify that all the points in 
a cluster must be sufficiently close (or similar) to one another. 

 
 
 
 
 
 
 
 Figure 3: Three well-separated clusters of 2 dimensional points. 
 
However, in many sets of data, a point on the edge of a cluster may be closer (or more 
similar) to some objects in another cluster than to objects in its own cluster.  
Consequently, many clustering algorithms use the following criterion. 
 
2) Center-based Cluster Definition: A cluster is a set of objects such that an object in a 

cluster is closer (more similar) to the “center” of a cluster, than to the center of any 
other cluster.  The center of a cluster is often a centroid, the average of all the points 
in the cluster, or a medoid, the “most representative” point of a cluster.  

 
 
 
 
 
 
 Figure 4: Four center-based clusters of 2 dimensional points. 
 
3) Contiguous Cluster Definition (Nearest Neighbor or Transitive Clustering): A 

cluster is a set of points such that a point in a cluster is closer (or more similar) to one 
or more other points in the cluster than to any point not in the cluster.   

  
 
 
 
 
 Figure 5: Eight contiguous clusters of 2 dimensional points. 
 
4) Density-based definition: A cluster is a dense region of points, which is separated by 

low-density regions, from other regions of high density. This definition is more often 
used when the clusters are irregular or intertwined, and when noise and outliers are 
present.  Notice that the contiguous definition would find only one cluster in Figure 6.  
Also note that the three curves don’t form clusters since they fade into the noise, as 
does the bridge between the two small circular clusters. 
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 Figure 6: Six dense clusters of 2 dimensional points.  
 
5) Similarity-based Cluster definition: A cluster is a set of objects that are “similar”, 

and objects in other clusters are not “similar.” A variation on this is to define a cluster 
as a set of points that together create a region with a uniform local property, e.g., 
density or shape. 

 

2.7 Measures (Indices) of Similarity and Dissimilarity 
The notion of similarity and dissimilarity (distance) seems fairly intuitive.  However, the 
quality the quality of a cluster analysis depends critically on the similarity measure that is 
used and, as a consequence, hundreds of different similarity measures have been 
developed for various situations.  The discussion here is necessarily brief. 

2.7.1 Attribute types and Scales 
The proximity measure (and the type of clustering used) depends on the attribute type and 
scale of the data.  The three typical types of attributes are shown in Table 1, while the 
common data scales are shown in Table 2.  

 
Binary Two values, e.g., true and false. 
Discrete A finite number of values, or integers, e.g., counts. 
Continuous An effectively infinite number of real values, e.g., weight. 

 
Table 1: Different attribute types. 
 

Nominal The values are just different names, e.g., colors or zip codes. Qualitative 
 Ordinal The values reflect an ordering, nothing more, e.g., good, better, 

best. 
Interval The difference between values is meaningful, i.e., a unit of 

measurement exits.  For example, temperature on the Celsius or 
Fahrenheit scales. 

Quantitative 

Ratio The scale has an absolute zero so that ratios are meaningful.  
Examples are physical quantities such as electrical current, 
pressure, or temperature on the Kelvin scale. 

 
Table 2: Different attribute scales. 
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2.7.2 Euclidean Distance and Some Variations 
The most commonly used proximity measure, at least for ratio scales (scales with 

an absolute 0) is the Minkowski metric, which is a generalization of the distance between 
points in Euclidean space.  

rrd

k
jkikij xxp

/1

1










−= ∑

=

where, r is a parameter, d is the dimensionality of the data object, and xik and xjk are, 
respectively, the kth components of the ith and jth objects, xi and xj.   

For r = 1, this distance is commonly known as the L1 norm or city block distance. 
If r = 2, the most common situation, then we have the familiar L2 norm or Euclidean 
distance.  Occasionally one might encounter the Lmax norm (L∞ norm), which represents 
the case r → ∞.  Figure 7 gives the proximity matrices for the L1, L2 and L∞ distances, 
respectively, using the data matrix from Figure 2. 

The r parameter should not be confused with the dimension, d.  For example, 
Euclidean, Manhattan and supremum distances are defined for all values of d, 1, 2, 3, …, 
and specify different ways of combining the differences in each dimension (attribute) into 
an overall distance. 
 

L2 p1 p2 p3 p4 
p1 0.000 2.828 3.162 5.099 
p2 2.828 0.000 1.414 3.162 
p3 3.162 1.414 0.000 2.000 
p4 5.099 3.162 2.000 0.000 

point x y 
p1 0 2 
p2 2 0 
p3 3 1 
p4 5 1 

 
L1 p1 p2 p3 p4 
p1 0.000 4.000 4.000 6.000 
p2 4.000 0.000 2.000 4.000 
p3 4.000 2.000 0.000 2.000 
p4 6.000 4.000 2.000 0.000 

L∞ p1 p2 p3 p4 
p1 0.000 2.000 3.000 5.000 
p2 2.000 0.000 1.000 3.000 
p3 3.000 1.000 0.000 2.000 
p4 5.000 3.000 2.000 0.000 

 
Figure 7.  Data matrix and the corresponding L1, L2, and L∞ proximity matrices. 
 
 Finally, note that various Minkowski distances are metric distances.  In other 
words, given a distance function, dist, and three points a, b, and c, these distances satisfy 
the following three mathematical properties: reflexivity ( dist(a, a) = 0 ), symmetry ( 
dist(a, b) = dist(b, a) ), and the triangle inequality (  dist(a, c) ≤ dist(a, b) + dist(b, a) ).  
Not all distances or similarities are metric, e.g., the Jaccard measure of the following 
section. This introduces potential complications in the clustering process since in such 
cases, a similar (close) to b and b similar to c, does not necessarily imply a similar to c.  
The concept based clustering, which we discuss later, provides a way of dealing with 
such situations. 
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2.7.3 Similarity Measures Between Binary Vectors 
These measures are referred to as similarity coefficients [JD88], and typically have 
values between 0 (not at all similar) and 1 (completely similar). The comparison of two 
binary vectors, a and b, leads to four quantities: 

N01= the number of positions where a was 0 and b was 1 
N10= the number of positions where a was 1 and b was 0 
N00 = the number of positions where a was 0 and b was 0 
N11 = the number of positions where a was 1 and b was 1 

 
Two common similarity coefficients between binary vectors are the simple matching 
coefficient (SMC) and the Jacccard coefficient.  
 

SMC = (N11 + N00) / (N01 + N10 + N11 + N00)  
 

Jaccard =  N11 / (N01 + N10 + N11)   
 

For the following two binary vectors, a and b we get SMC = 0.7 and Jaccard = 0. 
a =  1 0 0 0 0 0 0 0 0 0        
b =  0 0 0 0 0 0 1 0 0 1  
  

Conceptually, SMC equates similarity with the total number of matches, while J 
considers only matches on 1’s to be important. There are situations in which both 
measures are more appropriate.  For example, if the vectors represent students’ answers 
to a True-False test, then both 0-0 and 1-1 matches are important and these two students 
are very similar, at least in terms of the grades they will get.  If instead, the vectors 
indicate particular items purchased by two shoppers, then the Jaccard measure is more 
appropriate since it would be odd to say that the purchasing behavior of two customers is 
similar, even though they did not buy any of the same items. 

2.8 Hierarchical and Partitional Clustering 
The main distinction in clustering approaches is between hierarchical and partitional 
approaches. Hierarchical techniques produce a nested sequence of partitions, with a 
single, all-inclusive cluster at the top and singleton clusters of individual points at the 
bottom.  Each intermediate level can be viewed as combining (splitting) two clusters 
from the next lower (next higher) level.  (Hierarchical clustering techniques that start 
with one large cluster and split it are termed “divisive,” while approaches that start with 
clusters containing a single point, and then merge them are called “agglomerative.”) 
While most hierarchical algorithms involve joining two clusters or splitting a cluster into 
two sub-clusters, some hierarchical algorithms join more than two clusters in one step or 
split a cluster into more than two sub-clusters. 

Partitional techniques create a one-level (unnested) partitioning of the data points.  
If K is the desired number of clusters, then partitional approaches typically find all K 
clusters at once.  Contrast this with traditional hierarchical schemes, which bisect a 
cluster to get two clusters or merge two clusters to get one.  Of course, a hierarchical 
approach can be used to generate a flat partition of K clusters, and likewise, the repeated 
application of a partitional scheme can provide a hierarchical clustering.  
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There are also other important distinctions between clustering algorithms:  Does a 
clustering algorithm cluster on all attributes simultaneously (polythetic) or use only one 
attribute at a time (monothetic)? Does a clustering technique use one object at a time 
(incremental) or does the algorithm require access to all objects (non-incremental)?  Does 
the clustering method allow a cluster to belong to multiple clusters (overlapping) or does 
it assign each object to a single cluster (non-overlapping)?  Note that overlapping clusters 
are not the same as fuzzy clusters, but rather reflect the fact that in many real situations, 
objects belong to multiple classes. 

2.9 Specific Partitional Clustering Techniques: K-means  
The K-means algorithm discovers K (non-overlapping) clusters by finding K centroids 
(“central” points) and then assigning each point to the cluster associated with its nearest 
centroid.   (A cluster centroid is typically the mean or median of the points in its cluster 
and “nearness” is defined by a distance or similarity function.)  Ideally the centroids are 
chosen to minimize the total “error,” where the error for each point is given by a function 
that measures the discrepancy between a point and its cluster centroid, e.g., the squared 
distance.  Note that a measure of cluster “goodness” is the error contributed by that 
cluster.  For squared error and Euclidean distance, it can be shown [And73] that a 
gradient descent approach to minimizing the squared error yields the following basic K-
means algorithm.  (The previous discussion still holds if we use similarities instead of 
distances, but our optimization problem becomes a maximization problem.) 

 
Basic K-means Algorithm for finding K clusters. 

 
1. Select K points as the initial centroids. 
2. Assign all points to the closest centroid. 
3. Recompute the centroid of each cluster. 
4. Repeat steps 2 and 3 until the centroids don’t change (or change very little). 

 
K-means has a number of variations, depending on the method for selecting the 

initial centroids, the choice for the measure of similarity, and the way that the centroid is 
computed.  The common practice, at least for Euclidean data, is to use the mean as the 
centroid and to select the initial centroids randomly. 

In the absence of numerical problems, this procedure converges to a solution, 
although the solution is typically a local minimum.  Since only the vectors are stored, the 
space requirements are O(m*n), where m is the number of points and n is the number of 
attributes.  The time requirements are O(I*K*m*n), where I is the number of iterations 
required for convergence.  I is typically small and can be easily bounded as most changes 
occur in the first few iterations.  Thus, the time required by K-means is efficient, as well 
as simple, as long as the number of clusters is significantly less than m. 

Theoretically, the K-means clustering algorithm can be viewed either as a 
gradient descent approach which attempts to minimize the sum of the squared error of 
each point from cluster centroid [And73] or as procedure that results from trying to 
model the data as a mixture of Gaussian distributions with diagonal covariance matrices 
[Mit97].  
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2.10 Specific Hierarchical Clustering Techniques: MIN, MAX, 
Group Average 

In hierarchical clustering the goal is to produce a hierarchical series of nested clusters, 
ranging from clusters of individual points at the bottom to an all-inclusive cluster at the 
top.  A diagram called a dendogram graphically represents this hierarchy and is an 
inverted tree that describes the order in which points are merged (bottom-up, 
agglomerative approach) or clusters are split (top-down, divisive approach).  One of the 
attractions of hierarchical techniques is that they correspond to taxonomies that are very 
common in the biological sciences, e.g., kingdom, phylum, genus, species, …  (Some 
cluster analysis work occurs under the name of “mathematical taxonomy.”)  Another 
attractive feature is that hierarchical techniques do not assume any particular number of 
clusters.  Instead, any desired number of clusters can be obtained by “cutting” the 
dendogram at the proper level.  Finally, hierarchical techniques are thought to produce 
better quality clusters [JD88]. 

In this section we describe three agglomerative hierarchical techniques: MIN, 
MAX, and group average. For the single link or MIN version of hierarchical clustering, 
the proximity of two clusters is defined to be minimum of the distance (maximum of the 
similarity) between any two points in the different clusters.  The technique is called 
single link, because if you start with all points as singleton clusters, and add links 
between points, strongest links first, these single links combine the points into clusters.  
Single link is good at handling non-elliptical shapes, but is sensitive to noise and outliers.  

For the complete link or MAX version of hierarchical clustering, the proximity of 
two clusters is defined to be maximum of the distance (minimum of the similarity) 
between any two points in the different clusters.  The technique is called complete link 
because, if you start with all points as singleton clusters, and add links between points, 
strongest links first, then a group of points is not a cluster until all the points in it are 
completely linked, i.e., form a clique.  Complete link is less susceptible to noise and 
outliers, but can break large clusters, and has trouble with convex shapes.  

For the group average version of hierarchical clustering, the proximity of two 
clusters is defined to be the average of the pairwise proximities between all pairs of 
points in the different clusters.  Notice that this is an intermediate approach between MIN 
and MAX.  This is expressed by the following equation: 

 

proximity (cluster1, cluster2) = 
)2(*)1(

),(
2
1

21

2
1

clustersizeclustersize
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clusterp
clusterp
∑

∈
∈

 

 
Figure 8 shows a table for a sample similarity matrix and three dendograms, 

which respectively, show the series of merges that result from using the MIN, MAX, and 
group average approaches.  In this simple case, MIN and group average produce the same 
clustering. 
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 I1  I2  I3  I4  I5  

 I1 1.00 0.90 0.10 0.65 0.20 
0.90 1.00 0.70 0.60 0.50 
0.10 0.70 1.00 0.40 0.30 
0.65 0.60 0.40 1.00 0.80 
0.20 0.50 0.30 0.80 1.00 

 I2  
I3  
I4  

 I5 
 
 
 
 
 
 
 
 
 

1 2 3 4 5 1 2 3 4 5  
             MIN     MAX           Group Average 

1 2 3 4 5

 
Figure 8:  Dendograms produced by MIN, MAX and group average hierarchical 

clustering technique. 
 

3 The “Curse of Dimensionality” 
It was Richard Bellman who apparently originated the phrase, “the curse of 

dimensionality,” in a book on control theory [Bel61]. The specific quote from [Bel61], 
page 97, is “In view of all that we have said in the forgoing sections, the many obstacles 
we appear to have surmounted, what casts the pall over our victory celebration?  It is the 
curse of dimensionality, a malediction that has plagued the scientist from the earliest 
days.”  The issue referred to in Bellman’s quote is the impossibility of optimizing a 
function of many variables by a brute force search on a discrete multidimensional grid. 
(The number of grids points increases exponentially with dimensionality, i.e., with the 
number of variables.)  With the passage of time, the “curse of dimensionality” has come 
to refer to any problem in data analysis that results from a large number of variables 
(attributes).  

In general terms, problems with high dimensionality result from the fact that a 
fixed number of data points become increasingly “sparse” as the dimensionality increase.  
To visualize this, consider 100 points distributed with a uniform random distribution in 
the interval [ 0, 1].  If this interval is broken into 10 cells, then it is highly likely that all 
cells will contain some points.  However, consider what happens if we keep the number 
of points the same, but distribute the points over the unit square. (This corresponds to the 
situation where each point is two-dimensional.)  If we keep the unit of discretization to be 
0.1 for each dimension, then we have 100 two-dimensional cells, and it is quite likely that 
some cells will be empty.  For 100 points and three dimensions, most of the 1000 cells 
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will be empty since there are far more points than cells.  Conceptually our data is “lost in 
space” as we go to higher dimensions.   

For clustering purposes, the most relevant aspect of the curse of dimensionality 
concerns the effect of increasing dimensionality on distance or similarity. In particular, 
most clustering techniques depend critically on the measure of distance or similarity, and 
require that the objects within clusters are, in general, closer to each other than to objects 
in other clusters.  (Otherwise, clustering algorithms may produce clusters that are not 
meaningful.) One way of analyzing whether a data set may contain clusters is to plot the 
histogram (approximate probability density function) of the pairwise distances of all 
points in a data set (or of a sample of points if this requires too much computation.)   If 
the data contains clusters, then the graph will typically show two peaks: a peak 
representing the distance between points in clusters, and a peak representing the average 
distance between points.  Figures 9a and 9b, respectively, show idealized versions of the 
data with and without clusters. Also see [Bri95].  If only one peak is present or if the two 
peaks are close, then clustering via distance based approaches will likely be difficult. 
Note that clusters of different densities could cause the leftmost peak of Fig. 9a to 
actually become several peaks.  

 
 
 

Relative        Relative 
Probability       Probability 

 
 
 
  Distance         Distance 
                      

(a) Data with clusters (b) Data without clusters  
  

Figure 9: Plot of interpoint distances for data with and without clusters. 
 

There has also been some work on analyzing the behavior of distances for high 
dimensional data. In [BGRS99], it is shown, for certain data distributions, that the 
relative difference of the distances of the closest and farthest data points of an 
independently selected point goes to 0 as the dimensionality increases, i.e.,  

 

0lim =−
∞→ MinDist

MinDistMaxDist
d

 

 
For example, this phenomenon occurs if all attributes are i.i.d. (identically and 
independently distributed).  Thus, it is often said, “in high dimensional spaces, distances 
between points become relatively uniform.”  In such cases, the notion of the nearest 
neighbor of a point is meaningless. To understand this in a more geometrical way, 
consider a hyper-sphere whose center is the selected point and whose radius is the 
distance to the nearest data point.  Then, if the relative difference between the distance to 
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nearest and farthest neighbors is small, expanding the radius of the sphere “slightly” will 
include many more points.   

In [BGRS99] a theoretical analysis of several different types of distributions is 
presented, as well as some supporting results for real-world high dimensional data sets.  
This work was oriented towards the problem of finding the nearest neighbors of points, 
but the results also indicate potential problems for clustering high dimensional data. 

The work just discussed was extended in [HAK00] to look at the absolute 
difference, MaxDist – MinDist, instead of the relative difference.  It was shown that the 
behavior of the absolute difference between the distance to the closest and farthest 
neighbors of an independently selected point depends on the distance measure.  In 
particular, for the L1 metric, MaxDist – MinDist increases with dimensionality, for the L2 
metric, MaxDist – MinDist remains relatively constant, and for the Ld metric, d ≥ 3, 
MaxDist – MinDist goes to 0 as dimensionality increase. These theoretical results were 
also confirmed by experiments on simulated and real datasets.  The conclusion is that the 
Ld metric, d ≥ 3, is meaningless for high dimensional data. 

The previous results indicate the potential problems with clustering high 
dimensional data sets, at least in cases where the data distribution causes the distances 
between points to become relatively uniform.  However, things are sometimes not as bad 
as they might seem, for it is often possible to reduce the dimensionality of the data 
without losing important information.  For example, sometimes it is known apriori that 
only a smaller number of variables are of interest.  If so, then these variables can be 
selected, and the others discarded, thus reducing the dimensionality of the data set.  More 
generally, data analysis (clustering or otherwise) is often preceded by a “feature 
selection” step that attempts to remove “irrelevant” features.   This can be accomplished 
by discarding features that show little variation or which are highly correlated with other 
features.  (Feature selection is a complicated subject in its own right.)   

Another approach is to project points from a higher dimensional space to a lower 
dimensional space.  The idea here is that that often data can be approximated reasonably 
well even if only a relatively small number of dimensions are kept, and thus, little “true” 
information is lost.  Indeed, such techniques can, in some cases, enhance the data analysis 
because they are effective in removing noise.  Typically this type of dimensionality 
reduction is accomplished by applying techniques from linear algebra or statistics such as 
Principal Component Analysis (PCA) [JD88] or Singular Value Decomposition (SVD) 
[Str86].   

To make this more concrete we briefly illustrate with SVD. (Mathematically less 
inclined readers can skip this paragraph without loss.) A singular value decomposition of 
an m by n matrix, M, expresses M as the sum of simpler rank 1 matrices as follows:  

∑=
=

n

i

T
iii vusM

1
, where , a scalar, is the iis th singular value of M, ui is the ith  left 

singular vector, and vi is the ith  right singular vector.  All singular values beyond the first 
r, where r = rank(M) are 0 and all left (right) singular vectors are orthogonal to each other 
and are of unit length.  A matrix can be approximated by omitting some of the terms of 
the series that correspond to non-zero singular values.  (Singular values are non-negative 
and ordered by decreasing magnitude.)  Since the magnitudes of these singular values 
often decrease rapidly, an approximation based on a relatively small number of singular 
values, e.g., 50 or 100 out of 1000, is often sufficient for a productive data analysis. 
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Furthermore, it is not unusual to see data analyses that take only the first few singular 
values. 

However, both feature selection and dimensionality reduction approaches based 
on PCA or SVD may be inappropriate if different clusters lie in different subspaces.  
Indeed, we emphasize that for many high dimensional data sets it is likely that clusters lie 
only in subsets of the full space. Thus, many algorithms for clustering high dimensional 
data automatically find clusters in subspaces of the full space. One example of such a 
clustering technique is  “projected” clustering [AWYPP99], which also finds the set of 
dimensions appropriate for each cluster during the clustering process.  More techniques 
that find clusters in subspaces of the full space will be discussed in Section 4.   
 In summary, high dimensional data is not like low dimensional data and needs 
different approaches.  The next section presents recent work to provide clustering 
techniques for high dimensional data.  While some of this work is represents different 
developments of a single theme, e.g., grid based clustering, there is considerable 
diversity, perhaps because of high dimensional data, like low dimensional data is highly 
varied.  

4 Recent Work in Clustering High Dimensional Data 

4.1 Clustering via Hypergraph Partitioning 
Hypergraph-based clustering [HKKM97] is an approach to clustering in high dimensional 
spaces, which is based on hypergraphs.  (This is also work of one of the authors (Kumar), 
but not our recent work on clustering referenced earlier, which comes later in this 
section.) Hypergraphs are an extension of regular graphs, which relax the restriction that 
an edge can only join two vertices.  Instead an edge can join many vertices.  Hypergraph-
based clustering consists of the following steps: 

 
1) Define the condition for connecting several objects (each object is a vertex of the 

hypergraph) by a hyperedge. 
2) Define a measure for the strength or weight of a hyperedge. 
3) Use a graph-partitioning algorithm [KK98] to partition the hypergraph into two parts 

in such a way that the weight of the hyperedges cut is minimized.   
4) Continue the partitioning until a fixed number of partitions are achieved, or until a 

new partition would produce a poor cluster, as measured by some fitness criteria. 
 
In [HKKM97], the data being clustered is “market basket” data.  With this kind of 

data there are a number of items and a number of “baskets”, or transactions, each of 
which contains a subset of all possible items.  (A prominent example of market basket 
data is the subset of store items (products) purchased by customers in individual 
transactions – hence the name market basket data.)  This data can be represented by a set 
of (very sparse) binary vectors – one for each transaction.  Each item is associated with a 
dimension (variable), and a value of 1 indicates that the item was present in the 
transaction, while a value of 0 indicates that the item was not present. 

The individual items are the vertices of the hypergraph.  The hyperedges are 
determined by determining subsets of items that frequently occur together.  For example, 
baby formula and diapers are often purchased together.  These subsets of frequently co-
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occurring items are called frequent itemsets and can be found using relatively simple and 
efficient algorithms [AS97].  

The strength of the hyperedges is determined in the following manner.  If the 
frequent itemset being considered is of size n, and the items of the frequent itemset are i1, 
i2… in, then the strength of a hyperedge is obtained as follows:   

 
1) Consider each individual item, ij, in the frequent itemset. 
2) Determine what fraction of the market baskets (transactions) that contain the other n - 

1 items also contain ij. This (estimate of the) conditional probability that ij occurs 
when the other items do is a measure of the strength of the association between the 
items. 

3) Average these conditional probabilities together. 
 

∑
=

+−
n

j
njjj iiiiiprob

n 1
111 ),,,...,|(1

More formally the strength of a hyperedge is given by  
 
An important feature of this algorithm is that it transforms a problem in a sparse, 

high dimensional data space into a well-studied graph-partitioning problem that can be 
efficiently solved.   

4.2 Grid Based Clustering Approaches 
In its most basic form, grid based clustering is relatively simple:  
a) Divide the space over which the data ranges into (hyper) rectangular cells, e.g., 

by partitioning the range of values in each dimension into equally sized cells.  See 
figure 10 for a two dimensional example of such a grid  

 
 
Figure 10: Two dimensional grid  
                  for cluster detection 
 
 
 
 
 
 
b) Discard low-density grid cells.  This assumes a density based definition of clusters, 

i.e., that high-density regions represent clusters, while low-density regions represent 
noise.  This is often a good assumption, although density based approaches may have 
trouble when there are clusters are of widely differing densities. 

c) Combine adjacent high-density cells to form clusters.  If high-density regions are 
adjacent, then they are joined to form a single cluster. 

 
Assigning points to cells requires only linear time, i.e., the time complexity is 

O(n),  where n is the number of data points.  (However, if the data is high dimensional or 
some dimensions have a large range, it is necessary to use data structures, e.g., hash 
tables [CLR90], that do not explicitly store the non-empty cells.)  Discarding low-density 
cells also requires only linear time, at least if only non-empty cells are stored.  However, 
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combining dense cells can potentially take O(n2) time, since it may be necessary to 
compare each non-empty cell to every other.  Nonetheless, if the number of dense grid 
cells is O( n  ), then this step will also be linear. 

There are a number of obvious concerns about grid-based clustering methods.  
The grids are square or rectangular and don’t necessarily fit the shape of the clusters.  
This can be handled by increasing the number of grid cells, but at the price of increasing 
the amount of work, and if the grid size is halved the number of cells increases by a 
factor of 2d, where d is the number of dimensions.  Also, since the density of a real 
cluster may vary, making the grid size too small might put “holes” in the cluster, 
especially with a small number of points.  Finally, grid based clustering typically assumes 
that the distance between points is measure by and L1 or L2 distance measure. 

Also, despite the appealing efficiency of grid based clustering schemes, there are 
serious problems as the dimensionality of the data increases.  First, the number of cells 
increases exponentially with increasing dimensionality.  For example, even if each 
dimension is only split in two, there will still be 2d cells. Given 30 dimensional data, a 
grid based clustering approach will use, at least conceptually, a minimum of a billion 
cells.  (Again by using algorithms for hash tables or sparse arrays, at most n cells need to 
be physically represented.) For all but the largest data sets, most of these cells will be 
empty.  More importantly, it is very possible - particularly with a regular grid - that that a 
cluster might be divided into a large number of cells and that many or even all these cells 
might have a density less than the threshold. 

Another problem is finding clusters in the full-dimensional space.  To see this 
imagine that each point in one of the clusters in figure 10 is augmented with many 
additional variables, but that the values assigned to points in these dimensions are 
uniformly randomly distributed.  Then almost every point will fall into a separate cell in 
the new, high dimensional space.  Thus, as previously mentioned, clusters of points may 
only exist in subsets of high dimensional spaces.  Of course, the number of possible 
subspaces is also exponential in the dimensionality of the space, yet another aspect of the 
curse of dimensionality. 

4.2.1 CLIQUE 
CLIQUE [AGGR98] is a clustering algorithm that attempts to deal with these problems 
and whose approach is based on the following interesting observation: a region that is 
dense in a particular subspace must create dense regions when projected onto lower 
dimensional subspaces.  For example, if we examine the distribution of the x (horizontal) 
and y (vertical) coordinates of the points in Figure 11, we see dense regions in the one-
dimensional distributions which reflect the existence two-dimensional clusters.  In Figure 
11, the gray horizontal columns and the slashed vertical columns indicate the projections 
of the clusters onto the vertical and horizontal axes, respectively. Figure 11 also 
illustrates that high density in a lower dimension can only suggest possible locations of 
clusters in a higher dimension, as the higher dimensional region formed by the 
intersection of two dense lower dimensional dense regions may not correspond to an 
actual cluster.  
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        Regions that are candidates for having clusters, but don’t 
 
 
                       
 
 
        Dense  y regions 
 
                       
  
 
 
                                                            
 
          Dense  x  regions 
 

Figure 11: Illustration of the idea that density in high dimensions implies density in low 
dimensions, but not vice-versa. 

 
However, by starting with dense one-dimensional intervals, it is possible to find 

the potential dense two-dimensional intervals, and by inspecting these, to find the actual 
dense two-dimensional intervals.  This procedure can be extended to find dense units in 
any subspace, and to find them much more efficiently than by forming the cells 
corresponding to all possible subsets of dimensions and then searching for the dense units 
in these cells.  However, CLIQUE still needs to use heuristics to reduce the subsets of 
dimensions investigated and the complexity of CLIQUE, while linear in the number of 
data points, is not linear in the number of dimensions. 

4.2.2 MAFIA 
MAFIA (Merging Adaptive Finite Intervals And is more than a clique) [NGC99], which 
is a refinement of the CLIQUE approach, finds better clusters and achieves higher 
efficiency by using non-uniform grid cells.  Specifically, rather than arbitrarily splitting 
the data into a pre-determined number of evenly spaced intervals, MAFIA partitions each 
dimension using a variable number of “adaptive intervals”, which better reflect the 
distribution of the data in that dimension.  To illustrate, CLIQUE would more likely use a 
grid like that shown in Figure 10, and thus, would break each of the dense one-
dimensional intervals into a number of subintervals, including a couple (at each end) that 
are of lesser density because they include part of the non-dense region.  Conceptually, 
MAFIA starts with a large number of small intervals for each dimension and then 
combines adjacent intervals of similar density to end up with a smaller number of larger 
intervals. Thus, a MAFIA grid would likely look more like the idealized grid shown in 
Figure 12 than the suboptimal grid of figure 10.   
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Figure 12: MAFIA grid for our data. 

4.2.3 DENCLUE 
A different approach to the same problem is provided by the DENCLUE [HK98]. We 
describe this approach in some detail, since this approach can be viewed as a 
generalization of other density-based approaches such as DBSCAN [EKSX96] and K-
means.  DENCLUE (DENsity CLUstEring) is a density clustering approach that takes a 
more formal approach to density based clustering by modeling the overall density of a set 
of points as the sum of “influence” functions associated with each point.  The resulting 
overall density function will have local peaks, i.e., local density maxima, and these local 
peaks can be used to define clusters in a straightforward way.  Specifically, for each data 
point, a hill climbing procedure finds the nearest peak associated with that point, and the 
set of all data points associated with a particular peak (called a local density attractor) 
becomes a (center-defined) cluster.  However, if the density at a local peak is too low, 
then the points in the associated cluster are classified as noise and discarded.  Also, if a 
local peak can be connected to a second local peak by a path of data points, and the 
density at each point on the path is above a minimum density threshold, ξ, then the 
clusters associated with these local peaks are merged.  Thus, clusters of any shape can be 
discovered. 

DENCLUE is based on a well-developed area of statistics and pattern recognition 
which is know as “kernel density estimation”  [DHS00].   The goal of kernel density 
estimation (and many other statistical techniques as well) is to describe the distribution of 
the data by a function.  For kernel density estimation, the contribution of each point to the 
overall density function is expressed by an “influence” (kernel) function.  The overall 
density is then merely the sum of the influence functions associated with each point.  

Typically the influence or kernel function is symmetric (the same in all directions) 
and its value (contribution) decreases as the distance from the point increases.  For 

example, for a particular point, x, the Gaussian function, K(x) = 2

2

2
),(-distance

σ
yx

e , is often used 
as a kernel function. (σ is a parameter which governs how quickly the influence of point 
drops off.)  Figure 13a shows how a Gaussian function would look for a single two-
dimensional point, while 13c shows what the overall density function produced by the 
Gaussian influence functions of the set of points shown in 13b. 
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a) Gaussian Kernel           b) Set of points                      c) Overall density function 
 
Figure 13:  Example of the Gaussian influence (kernel) function and an overall density 
function.  (σ = 0.75). 

 
The DENCLUE algorithm has two steps, a preprocessing step and a clustering 

step.  In the pre-clustering step, a grid for the data is created by dividing the minimal 
bounding hyper-rectangle into d-dimensional hyper-rectangles with edge length 2σ.  The 
grid cells that contain points are then determined.  (As mentioned earlier, only the 
occupied grid cells need be constructed.)  The grid cells are numbered with respect to a 
particular origin (at one edge of the bounding hyper-rectangle and these keys are stored in 
a search tree to provide efficient access in later processing.  For each stored grid cell, the 
number of points, the sum of the points in the cell, and connections to neighboring cells 
are also stored.  

For the clustering step DENCLUE, considers only the highly populated grid cells 
and the cells that are connected to them.  For each point, x, the local density function is 
calculated only by considering those points that are from grid cells that are “close” to the 
point. As mentioned above, DENCLUDE discards clusters associated with a density 
attractor whose density is less than ξ.  Finally, DENCLUE merges density attractors that 
can be joined by a path of points, all of which have a density greater than ξ. 

DENCLUE can be parameterized so that it behaves much like DBSCAN, but it is 
much more efficient that DBSCAN.  DENCLUE can also behave like K-means by 
choosing σ appropriately and by omitting the step that merges center-defined clusters into 
arbitrary shaped clusters.  Furthermore, by performing repeated clusterings for different 
values of σ, a hierarchical clustering can be obtained. 

4.2.4 OptiGrid 
Despite the appealing characteristics of DENCLUE in low dimensional space, it does not 
work well as the dimensionality increase or if noise is present.  Thus, the same 
researchers who created DENCLUE created OptiGrid. [HK99].   In this paper, the 
authors also make a number of interesting observations about the behavior of points in 
high dimensional space.  First, they observe that for high dimensional data noise seems to 
correspond to uniformly distributed data in that it tends to produce data where there is 
only one point in a grid cell.  More “centralized” distributions, like the Gaussian 
distribution result in far more cases where a grid cell has more than one point.  Thus, the 
statistics of how many cells are multiply occupied can give us an idea of the amount of 

 19



noise in the data.  Also, the authors provide additional comments on the observation that 
interpoint distances become relatively uniform as dimensionality increases.  In particular, 
they point out that this means that the maximum density of a group of points may occur 
in a region of relatively empty space, a phenomenon known as the “empty point 
phenomenon.” 

A fair amount of theoretical justification is presented in [HK99], but we will 
simplify our description.  First, this will make the general approach easier to understand, 
since this simplification will be more in line with the description of the algorithms given 
above.  Secondly, the algorithm actually implemented used the simplified approach. 
1) For each dimension: 

a) Generate a histogram of the data values.  Note that this is equivalent to counting 
the points in a uniform one-dimensional grid (or set of intervals) imposed on the 
values. 

b) Determine the noise level.  This can be done by manually inspecting the 
histogram, if the dimensionality is not too high, but otherwise needs to be 
automated.  For the results presented in the paper, the authors choose the manual 
approach. 

c) Find the leftmost and rightmost maxima and the q-1 maxima in between them. (q 
is the number of partitions of the data that we seek, and all these partitions could 
be in one dimension.)  

d) Choose the q minima between the maxima found in the previous step.  These 
points represent locations for possible cuts, i.e., locations where a hyperplane 
could be placed to partition the data.  Choosing a low-density cell minimizes the 
chance of cutting through a cluster.  However, it is not useful to cut at the edge of 
the data, and that is the reason for not choosing a minima at the edge, i.e., further 
right than the rightmost maxima or further left than the leftmost maxima. 

e) Score each potential cut, e.g., by it’s density. 
2) From all of the dimensions, select the best q cuts, i.e., the lowest density cuts. 
3) Using these cuts, create a grid that partitions the data. 
4) Find the highly populated grid cells and add them to the list of clusters.   
5) Refine the list of clusters. 
6) Repeat steps 1-5 using each cluster. 

The key simplification that we made in the description and that was made in the 
implementation in the paper was that the separating hyperplanes must be parallel to some 
axis.  To allow otherwise introduces additional time and coding complexity.   The authors 
also show that using rectangular grids does not result in too much error, particularly as 
dimensionality increases. 

In summary, OptiGrid seems a lot like MAFIA in that it creates a grid by using a 
data dependent partitioning.  However, unlike MAFIA and CLIQUE, it does not face the 
problem of combinatorial search for the best subspace to use for partitioning.  OptiGrid 
simply looks for the best cutting planes and creates a grid that is not likely to cut any 
clusters.  It then locates potential clusters among this set of grid cells and further 
partitions them if possible.  From an efficiency point, this is much better. 

However, some details of the implementation of OptiGrid were vague, and there 
are a number of choices for parameters, e.g., how many cuts should be made.  While 
OptiGrid seems promising, it should be remarked that another clustering approach, PDDP 
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[SB01], clusters data by making one optimal hyperplane cut at a time.  (This approach is 
more computationally expensive than Optigrid.)  One might think that such an approach 
would be able to match the best behavior of OptiGrid, but it has been shown that this 
method does not perform much better than a K-means approach.  (Actually a combined 
approach is suggested in [SB01].)  Thus, more evaluation is needed. 

4.3 Noise Modeling in Wavelet Space 

4.3.1 WaveCluster 
WaveCluster [SCZ98] is a clustering technique that interprets the original data as a two-
dimensional signal and then applies signal processing techniques ( the wavelet transform) 
to map the original data to a new space where cluster identification is more 
straightforward.  More specifically, WaveCluster defines a uniform two-dimensional grid 
on the data and represents the points in each grid cell by the number of points.  Thus, a 
collection of two-dimensional data points becomes an image, i.e., a set of “gray-scale” 
pixels, and the problem of finding clusters becomes one of image segmentation.    

While there are a number of techniques for image segmentation, wavelets have a 
couple of features that make them an attractive choice.  First, the wavelet approach 
naturally allows for a multiscale analysis, i.e., the wavelet transform allows features, and 
hence, clusters, to be detected at different scales, e.g., fine, medium, and coarse.  
Secondly, the wavelet transform naturally lends itself to noise elimination. 

The basic algorithm of WaveCluster is as follows: 
1) Create a grid and assign each data object to a cell in the grid.  The grid is 

uniform, but the grid size will vary for different scales of analysis.  Each grid cell 
keeps track of the statistical properties of the points in that cell, but for wave 
clustering, only the number of points in the cell is used.   

2) Transform the data to a new space by applying the wavelet transform.  This 
results in 4 “subimages” at several different levels of resolution, an “average” 
image, an image that emphasizes the horizontal features, an image that 
emphasizes vertical features, and an image that emphasizes corners.   

3) Find the connected components in the transformed space.  The average 
subimage is used to find connected clusters, which are just groups of connected 
“pixels,” i.e., pixels which are connected to one another horizontally, vertically, 
or diagonally. 

4) Map the cluster labels of points in the transformed space back to points in 
the original space.  WaveCluster creates a lookup table that associates each point 
in the original with a point in the transformed space.  Assignment of cluster labels 
to the original points is then straightforward. 

 
In summary, the key features of WaveCluster are order independence, no need to 

specify a number of clusters (although it is helpful to know this in order to figure out the 
right scale to look at, speed (linear), the elimination of noise and outliers, and the ability 
to find arbitrarily shaped clusters.  While the WaveCluster approach can theoretically be 
extended to more than two dimensions, it seems unlikely that WaveCluster will work 
well (efficiently and effectively) for medium or high dimensions.   
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4.3.2 Overcoming the Curse of Dimensionality via the Wavelet 
Transform 

The technique given in [MSB00] provides an approach for converting almost any kind of 
data to a gridded framework where a wavelet transform can be applied.  The key idea is 
to treat the data matrix as an image matrix.  A data matrix is a two dimensional array and 
so is an image matrix, and so, superficially, this is workable.  However, the order of the 
rows and columns in a data matrix is arbitrary, i.e., they can be shuffled without changing 
the meaning of the data, while in an image the order is critical because of the spatial 
(sequential) relationship implied.  Meaningful application of the wavelet transform 
depends on this spatial ordering, and thus, to treat a data array as an image requires the 
imposition of a meaningful order relationship on the rows (objects) and columns 
(variables) of the data matrix.  This is accomplished by the use of matrix reordering 
techniques to permute the rows and columns to a standard form, which gathers larger or 
non-zero values towards the diagonal. 

Once the matrix has been reordered, the data matrix is analyzed as if it were an 
image.  In particular, the wavelet coefficients for each point are calculated for a variety of 
scales, e.g., 5 scales which differ by a factor of two.   Thus, the original image is 
decomposed into 6 images (the image at 5 resolutions and a residual image.) Since most 
data has a lot of noise, statistical tests, which are based on an assumed statistical model 
for the noise in the data, can be applied to these wavelet coefficients to determine which 
ones are significant in a statistical sense.  By setting all significant wavelet coefficients to 
0, and each non-significant coefficient to 0, a binarized view of the data at each level of 
resolution can be obtained.  By looking at either the binarized view or the original 
wavelet transformed view at the different levels, it is often possible to visually identify 
various clusters for further investigation. 

Of course, the matrix reordering is an approximate process and may not always 
give exactly the same reordering from one run to the next.  However, the authors indicate 
that this method is intended for quick exploratory clustering and show that it works 
reasonably well for some examples that they present. 

4.4 A “Concept-Based” Approach to Clustering High 
Dimensional Data 

A key feature of some high dimensional data is that two objects may be highly 
similar even though commonly applied distance or similarity measures indicate that they 
are dissimilar or perhaps only moderately similar [GRS99]. Conversely, and perhaps 
more surprisingly, it is also possible that an object’s nearest or most similar neighbors 
may not be as highly “related” to the object as other objects which are less similar.  To 
deal with this issue we have extended previous approaches that define the distance or 
similarity of objects in terms of the number of nearest neighbors that they share.  The 
resulting approach defines similarity not in terms of shared attributes, but rather in terms 
of a more general notion of shared concepts.   The rest of this section details our work in 
finding clusters in these “concept spaces,” and in doing so, provides a contrast to the 
approaches of the previous section, which were oriented to finding clusters in more 
traditional vector spaces. 
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4.4.1 Concept Spaces 
For our purposes, a concept will be a set of attributes. As an example, for 

documents a concept would be a set of words that characterize a theme or topic such as 
“Art” or “Finance.”  The importance of concepts is that, for many data sets, the objects in 
the data set can be viewed as being generated from one or more sets of concepts in a 
probabilistic way.  Thus, a concept-oriented approach to documents would view each 
document as consisting of words that come from one or more concepts, i.e., sets of words 
or vocabularies, with the probability of each word being determined by an underlying 
statistical model.  We refer to data sets with this sort of structure as concept spaces, even 
though the underlying data may be represented as points in a vector space or in some 
other format.   The practical relevance of concept spaces is that data belonging to concept 
spaces must be treated differently in terms of how the similarity between points should be 
calculated and how the objects should be clustered. 

To make this more concrete we detail a concept-based model for documents. 
Figure 14a shows the simplest model, which we call the “pure concepts” model.  In this 
model, the words from a document in the ith class, Ci, of documents come from either the 
general vocabulary, V0, or from exactly one of the specialized vocabularies, V1, V2, …, 
Vp.  For this model the vocabularies are just sets of words and possess no additional 
structure.  In this case, as in the remaining cases discussed, all vocabularies can overlap.  
Intuitively, however, a specialized word that is found in a document is more likely to 
have originated from a specialized vocabulary than from the general vocabulary.   

Figure 14b is much like Figure 14a and shows a slightly more complicated 
(realistic) model, which we call the “multiple concepts” model.  The only difference from 
the previous model is that a word in a document from a particular class may come from 
more than one specialized vocabulary.  More complicated models are also possible. 

 
 

(b) Complicated Concepts (a) Pure Concepts 

. . . 

V0 – the general vocabulary 

Vp V2 V1 

Ck C2 . . . C1 

. . . 

V0 – the general vocabulary 

Vp V2 V1 

Ck C2 . . . C1  
 
 
 
 
 
 
 

Figure 14:  Different concept models. 
 
A statistical model for the concept-based models shown above could be the 

following. A word, w, in a document, d, from a cluster Ci, comes with one or more 
vocabularies with a probability given by P(w | Ci ) = ∑ P(w | Vj ) * P(Vj  | Ci).  For the pure 
concepts model, each word of a document comes only from the general vocabulary and 
one of the specialized vocabularies.  For the multiple concepts model, each word of a 
document comes from one or more specialized vocabularies.   
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4.4.2 Problems with Similarity in Concept Spaces 
In the beginning of this section, it was mentioned that similarity measures might behave 
in unexpected ways in concept spaces.  We present some examples and discussion to 
indicate why this is so.   

In the following we are assuming that the variables are what are sometimes called 
“unary” variables, i.e., it makes sense to say that an object has that attribute or doesn’t 
have that attribute.  For example, a document may or may not contain a certain word, or a 
customer may or may not purchase a certain item.  Counts, categorical attributes, or 
binary attributes can be easily translated into unary attributes, but the situation is more 
complicated with most continuous attributes. We omit discussion of such cases to keep 
the explanations simple. 

Our first example is similar to one in [GRS99].  Consider a concept space where 
all the objects fall into two groups, A and B.  Objects from group A are generated by 
selecting three of the attributes (with equal probability) from the concept set {1, 2, 3, 4, 
5} and objects from group B are generated by selecting three of the attributes from the 
concept set {4, 5, 6, 7, 8}.  Suppose that we have generated the following three objects x 
= {1, 2, 3}, y = {3, 4, 5}, and z = {4, 5, 6}.  (We can also represent these points as binary 
vectors, e.g., x = (1 1 1 0 0 0 0 0).)  Clearly, points x and y belong to group A, while point 
z belongs to group B.  However, just as clearly, most similarity measures, e.g., the 
Jaccard measure, would judge points y and z to be most similar, as they share two out of 
their three attributes, while x and y share only one attribute. 

4.4.3 The need for indirect similarity in concept spaces 
 

If we carefully examine document sets, we observe that the average similarity 
between documents within a cluster (using the popular cosine measure) is almost always 
lower than 0.6, and it generally lies between 0.2 and 0.5.  This means that, on the 
average, two documents in the same cluster share about 20% - 50% of their terms 
(assuming binary attributes).  If a documents’ similarity with is nearest neighbor is 0.3, 
then we should not put the two documents in the same cluster right away.  We should 
notice that the similarity between the two is actually low.  Consider the set of documents 
in Table 3. 

 
A 1 1 1 0 0 0 0 0 0 0 0 
B 0 1 1 1 0 0 0 0 0 0 0 
C 1 1 0 1 1 1 1 1 0 0 0 
D 0 0 0 1 1 1 1 1 0 1 1 
E 0 0 0 0 0 0 0 1 1 1 0 
F 0 0 0 0 0 0 0 0 1 1 1 

 
Table 3: Sample set of document 

 
The most similar two documents are C & D, but the appropriate clusters for this 

set are A, B, C and D, E, F.  In both of the clusters, every document shares 2 attributes 
with any other document.  First 4 attributes bind A, B and C together, while the last 4 
bind D, E and F together. 
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A document cluster should contain documents that form a topic, and this does not 

imply placing the closest neighbor of a document in the same cluster as we have seen in 
the previous example. If we look at the indirect similarities; number of length 2 links 
between documents, we will see that C & D have only one indirect link while A-B, A-C 
and B-C will all have 2 indirect links.  Hence, A-B-C and D-E-F form coherent clusters. 

For a more realistic example, consider actual similarity measures for documents.  
Documents are represented using the vector-space model [Rij79], where each document, 
d, is considered to be a vector, d, in the term-space (set of document “words”). In its 
simplest form, each document is represented by the (TF) vector, 

dtf  = (tf1, tf2, …, tfn),   
where tfi  is the frequency of the ith term in the document. (Normally very common words 
are stripped out completely and different forms of a word are reduced to one canonical 
form.)  In addition, we use the version of this model that weights each term based on its 
inverse document frequency (IDF) in the document collection. (This discounts frequent 
words with little discriminating power.)  Finally, in order to account for documents of 
different lengths, each document vector is normalized so that it is of unit length.  

There are a number of possible measures for computing the similarity between 
documents, but the most common one is the cosine measure, which is defined as  

cosine( d1, d2 ) =  (d1 •  d2) / ||d1|| ||d2|| ,  
where •  indicates the vector dot product and ||d|| is the length of vector d.   Notice that 
this measure is similar to the Jaccard measure in that it only considers the presence of 
terms to be important. 

As mentioned above, what distinguishes documents of different classes is the 
frequency with which words are used.  In particular, each class typically has a “core” 
vocabulary of words that are used more frequently.   For example, documents about 
finance will often talk about money, mortgages, trade, etc., while documents about sports 
talk about players, coaches, games, etc.  These core vocabularies may overlap, documents 
may use more than one “core” vocabulary, and any particular document may contain 
words from these different “core” vocabularies, even if it does not belong to the class of 
documents that typically uses such words. 

Each document has only a subset of 
all words from the complete vocabulary.  
Thus, because of the probabilistic nature of 
how words are distributed, any two 
documents may share many of the same 
words.  Thus, it should not be surprising 
that two documents can often be nearest 
neighbors without belonging to the same 
class. For a variety of document datasets 
(see [SKK00]). Figure 15 shows the 
percentage of documents whose nearest 
neighbor is not of the same class.  (Classes 
were pre-assigned, for example, by using the section of the newspaper in which a 
document occurred.)   

Figure 15: Percent nearest 
neighbors of a different class. 
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Since hierarchical and K-means clustering, which are often used for document 
clustering, use the cosine measure to decide how to cluster documents, they will 
inevitably make mistakes.  In particular, agglomerative hierarchal clustering will often 
put documents of the same class in the same cluster at the earliest stages of the clustering 
process.  Because of the way that hierarchical clustering works, these “mistakes” cannot 
be fixed once they happen.  K-means can potentially do better, because it continually 
reassigns documents to the most appropriate cluster as the clustering proceeds. However, 
K-means is still based on a definition of similarity that is suspect, and we have observed 
that clusters produced by K-means often contain documents that don’t have a consistent 
topic. 

In cases where nearest neighbors are unreliable, a different approach is needed 
that relies on more global properties.  We discuss a general approach based on nearest 
neighbors, and then discuss or own approach.  

4.4.4 A Shared Nearest Neighbor Approach to Similarity  
Our clustering algorithm is based on a shared nearest neighbor clustering algorithm 
described in [JP73].  A similar approach, but for hierarchical clustering, was developed in 
[GK78].  Recently, a couple of other clustering algorithms have used shared nearest 
neighbor ideas [GRS99, KHK99].   

We explain the approach of [JP73], which we call Jarvis-Patrick clustering, in 
more detail since it is the basis for our clustering technique.  We will describe the shared 
nearest neighbor algorithm in [JP73] using graph terminology.  (Recall that from a graph 
point of view, clustering is equivalent to breaking the graph into connected components, 
one for each cluster.)   
1) First the n nearest neighbors of all points are found.  In graph terms this can be 

regarded as breaking all but the n strongest links from a point to other points in the 
proximity graph.  This forms what we call a “nearest neighbor graph.” Note that the 
nearest neighbor graph is just a sparsified version of the original similarity graph, 
where we break the links to less similar points. 

2) We then determine the number of nearest neighbors shared by any two points.  In 
graph terminology we form what we call the “shared nearest neighbor” graph.  We do 
this by replacing each link (in the nearest neighbor graph) between two points by the 
number of neighbors that the points share.  In other words [GRS99], this is the 
number of length 2 paths between any two points in the nearest neighbor graph.  In 
the Fig. 16 the links between nodes (documents) indicate that they are similar (direct 
similarity).  The numbers show the strength of the link in the shared nearest neighbor 
graph. 
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Figure 16: Illustration of the ways points can share neighbors. 
 
3) All pairs of points are compared and if any two points share more than T neighbors, 

i.e., have a link in the shared nearest neighbor graph with a weight more than our 
threshold value, T (T≤ n), then the two points and any cluster they are part of are 
merged.  In other words, clusters are connected components in the shared nearest 
neighbor graph after we sparsify using a threshold. 

This approach has a number of nice properties.  It can handle clusters of different 
densities since the shared nearest neighbor approach is self-scaling.  Also, this approach 
is transitive, i.e., if point, p, shares lots of nearest neighbors with point, q, which in turn 
shares lots of nearest neighbors with point, r, then points p, q and r all belong to the same 
cluster.  The transitive property, in turn, allows this technique to handle clusters of 
different sizes and shapes.  As described in the next sections, we have extended the 
Jarvis-Patrick approach. 

4.4.5 Our Clustering Approach 
We begin by calculating the document similarity matrix, i.e., the matrix which gives the 
cosine similarity for each pair of documents.  Once this similarity matrix is calculated, we 
find the first n nearest neighbors for each document.  (Every object is considered to be its 
own 0th neighbor.)  In the nearest neighbor graph, there is a link from object i to object j, 
if i and j both have each other in their nearest neighbor list.  In the shared nearest 
neighbor graph, there is a link from i to j if there is a link from i to j in the nearest 
neighbor graph and the strength of this link is equal to the number of shared nearest 
neighbors of i and j. 

At this point, we 
could just apply a 
threshold, and take all the 
connected components of 
the shared nearest neighbor 
graph as our final clusters 
[JP73].  However, this 
threshold would need to be 
set too high since this is a 
single link approach and 

0 
Strong link threshold 
Labeling threshold 
Merge threshold 

Link strength Number of strong links 
n n+1 

Topic threshold 

Noise threshold 

0 

Figure 16:  Different types of parameters. 
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will give poor results when patterns in the dataset are not very significant.  On the other 
hand, when a high threshold is applied, a natural cluster will be split into many small 
clusters due to the variations in the similarity within the cluster.  We address these 
problems with the clustering algorithm described below. 

There are two types of parameters used in this algorithm: one type relates to the 
strength of the links in the shared nearest neighbor graph, the other type relates to the 
number of strong links for an object.  If the strength of a link is greater than a threshold, 
then that link is labeled as a strong link.  

The details of our shared nearest neighbor clustering algorithm are as follows: 
1) For every point i in the dataset, calculate the connectivity, conn[i], the number of 

strong links the point has. 
2) For a point i in the dataset, if conn[i] < noise threshold, then that point is not 

considered in the clustering since it is similar to only a few of its neighbors.  
Similarly, if conn[i] > topic threshold, then that point is similar to most of its 
neighbors and is chosen to represent its neighborhood. 

3) For any pair of points (i, j) in the dataset, if i and j share significant numbers of their 
neighbors, i.e. the strength of the link between i and j is greater than the merge 
threshold, then they will appear together in the final clustering if either one of them 
(or both) is chosen to be a representative.  Our algorithm will not suffer from the 
effects of transitivity since every other point on a chain of links has to be chosen to be 
a representative.  In other words, two objects that are not directly related will be put 
in the same cluster only if there are many other objects between them that are 
connected with strong links, half of which must represent their own neighborhood.   

4) Labeling step: Having defined the representative points and the points strongly 
related to them, we can bring back some of the points that did not survive the merge 
threshold.  This is done by scanning the shared nearest neighbor list of all the points 
that are part of a cluster, and checking whether those points have links to points that 
don’t belong to any cluster and have a link strength greater than the labeling 
threshold.  

After applying the algorithm described above, there may be singleton clusters.  
These singleton clusters are not equivalent to the singleton clusters obtained using the JP 
method.  Note that if only a threshold is applied after converting the nearest neighbor 
graph to the shared nearest neighbor graph, there will be several clusters (which are the 
connected components after applying the threshold), and the rest will be singletons. By 
introducing the topic threshold, we are able to mark the documents that have similar 
documents around.  In the end, if a document that is labeled as a topic remains as a 
singleton, this does not mean that it is a noise document.  For that document to be labeled 
as a topic, it must have enough number of strong links, which means that it has many 
similar neighbors but the strength of those links were not strong enough to merge them.   

Singleton clusters give us some idea about the less dominant topics in the dataset, 
and they are far more valuable than the singletons that are left out (labeled as 
background). To the best of our knowledge, there is no other algorithm that produces 
valuable singleton (or very small) clusters.  Being able to make use of the singleton 
clusters can be very useful.  If we’re trying to detect topics in a document set, we don’t 
have to force the parameters of the algorithms to the edge to find out small topics.  If we 
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end up getting a singleton cluster, that document will give us an idea about several other 
documents, whereas noise documents do not give us any idea about any other document. 
 The method described above finds communities of objects, where an object in a 
community shares a certain fraction of its neighbors with at least some number of 
neighbors.  While the probability of an object belonging to a class different from its 
nearest neighbor’s class may be relatively high, this probability decreases as the two 
objects share more and more neighbors.  This is the main idea behind the algorithm. 

4.4.6 An Application of Concept-based Clustering to Documents  
We illustrate concept based clustering by considering clustering for documents.  Given a 
set of documents, clustering is often used to group the documents, in the hope that each 
such group will represent documents with a common theme or topic (concept).  Initially 
hierarchical clustering was used to cluster documents [EW89].  This approach has the 
advantage of producing a set of nested document clusters, which can be interpreted as a 
topic hierarchy or tree, from general to more specific topics.  In practice, while the 
clusters at different levels of the hierarchy sometimes represent documents with 
consistent concepts or topics, it is common for many clusters to be a mixture of topics, 
even at lower, more refined levels of the hierarchy.   More recently, as document 
collections have grown larger, K-means clustering has emerged as a more efficient 
approach to producing clusters of documents [DM00, KH00, SKK00]. K-means 
clustering produces a set of un-nested clusters, and the top (most frequent or highest 
“weight”) terms of the cluster are used to characterize the topic of the cluster. Once again 
it is not unusual for some clusters to be mixtures of topics.  

By applying our algorithm for clustering concept-based data to documents, we 
have created an approach that more consistently produces clusters of documents with 
strong, coherent themes (concepts), even though many documents may be omitted in the 
process.  After all, in an arbitrary collection of documents, e.g., a set of newspaper 
articles, there is no reason to expect that all documents belong to a group with a strong 
topic or theme.  While a concept-based approach does not provide a complete 
organization of all documents, it does identify the “nuggets” of information in a 
document collection and might profitably be applied to practical problems such as 
grouping the search results of a Web search engine. 

4.4.7 Sample Results for Concept-based Clustering of Documents 
We applied our technique to the data set LA1, which is from the Los Angeles Times data 
of TREC-5. (See [ESK01] for more details.). The words in Table 4 are the most 
important (frequent) 6 words in each document cluster.  In Table 4 we see that all the 
documents in the first cluster are related to NCAA, while all the documents in the second 
cluster are related to NBA.  Even though both sets of documents are basketball related, 
our clustering algorithm found them as separate clusters.  We ran the K-means algorithm 
on the same dataset, and interestingly, all of the documents in these two clusters appeared 
in the same K-means cluster together with a number of documents related to gymnastics, 
swimming, as well as several apparently unrelated documents. The reason that K-means 
put all these sports documents in the same cluster is that sports documents tend to share a 
lot of common words such as, ‘score,’ ‘half,’ ‘quarter,’ ‘game,’ ‘ball,’ etc. This example 
indicates that pair-wise similarity by itself isn’t a good measure for clustering documents. 
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The NCAA cluster  The NBA cluster 
wolfpack towson lead tech Scor North        
syracus scor georgia dome auburn Louisvill  Pacer scor piston shot game hawkin 
Scor lead throw half Free Iowa  Cavali mckei charlott scor superson cleveland 
Scor Fresno unlv lead lockhart jacksonvil  Scor game tripucka basket hornet straight 
Panther pittsburgh sooner brookin Scor Game  levingston hawk jordan malon buck quarter 
Iowa minnesota scor illinoi wisconsin Burton  daugherti piston warrior cavali shot Eject 
Scor half virginia georgetown lead Kansa        
Burson louisvill scor ohio game Ellison        

Table 4: Six most important words in document cluster. 
 

Thus, using an approach based on shared nearest neighbors (SNN), we can get 
purer clusters, although not all the documents are assigned to clusters.  However, in order 
to make a fair comparison, we decided to remove from K-means clusters all documents 
that were far away from the centroid of their cluster.  We observed that this improved the 
misclassification rate only slightly.  Finally, we also noticed [ESK01], when we looked at 
the individual documents in a ‘supposedly poor’ SNN cluster, that the documents did 
form a coherent group even though they have different class labels.   

4.4.8 Some Final Comments on Concept Based Clustering 
While we have restricted our discussion here to concept based clustering for documents, 
the shared nearest neighbor approach to similarity on which it is based can be applied to 
many different sorts of data.  In particular, the shared nearest neighbor approach from 
which concept-based is derived, was originally used for two-dimensional spatial data, and 
we have also successfully applied our data to such data.  A major task ahead of us is to 
more precisely define those situations in which is it applicable.   

5 Conclusions 
In this paper we have provided a brief introduction to cluster analysis with an emphasis 
on the challenge of clustering high dimensional data.  The principal challenge in 
extending cluster analysis to high dimensional data is to overcome the “curse of 
dimensionality,” and we described, in some detail, the way in which high dimensional 
data is different from low dimensional data, and how these differences might affect the 
process of cluster analysis. We then described several recent approaches to clustering 
high dimensional data, including our own work on concept-based clustering.  All of these 
approaches have been successfully applied in a number of areas, although there is a need 
for more extensive study to compare these different techniques and better understand 
their strengths and limitations.   
 In particular, there is no reason to expect that one type of clustering approach will 
be suitable for all types of data, even all high dimensional data.  Statisticians and other 
data analysts are very cognizant of the need to apply different tools for different types of 
data, and clustering is no different. 
 Finally, high dimensional data is only one issue that needs to be considered when 
performing cluster analysis.  In closing we mention some other, only partially resolved, 
issues in cluster analysis: scalability to large data sets, independence of the order of input, 
effective means of evaluating the validity of clusters that are produced, easy 
interpretability of results, an ability to estimate any parameters required by the clustering 
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technique, an ability to function in an incremental manner, and robustness in the presence 
of different underlying data and cluster characteristics. 
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